Technical Paper 2

In situ U-value measurements in traditional buildings – preliminary results

Prepared for Historic Scotland

Dr. Paul Baker (Centre for Research on Indoor Climate & Health, Glasgow Caledonian University)
October 2008
In situ U-value measurements in traditional buildings – preliminary results.

Prepared for Historic Scotland by
Dr. Paul Baker
Centre for Research on Indoor Climate & Health
Glasgow Caledonian University
Paul.Baker@gcal.ac.uk
In situ U-value measurements in traditional buildings – preliminary results

1 Introduction

This report summarises the results of in situ U-value measurements of walls carried out by the Centre for Research on Indoor Climate & Health, Glasgow Caledonian University (GCU) for Historic Scotland between November 2007 and April 2008 in a sample of buildings representing traditional masonry construction in Scotland. Measurements were made of the heat flow directly through each wall using heat flux sensors mounted on internal surfaces and room and outdoor temperatures.

The main objective of the study was to assess the actual thermal performance of traditional building envelopes, in order to provide guidance for energy performance assessments and implementing energy efficiency measures in such buildings.

2 Monitoring procedure

Campbell Scientific CR1000 data loggers [1] equipped with heat flux and temperature sensors were used. Hukseflux HFP01 [2] heat flux sensors were used to measure heat flows through selected walls (Figure 1). The sensors are 80mm in diameter and 5mm thick. The sensors were mounted by firstly applying a layer of double sided adhesive tape to the back of the sensor. Secondly, low tack masking tape was applied to the wall. Finally, the heat flux sensor was applied firmly to the masked area. This arrangement was generally satisfactory for two or more weeks monitoring on painted surfaces only. Wallpapered surfaces were not generally used in case of damage. Sensor locations were chosen to avoid probable thermal bridge locations near to windows, corners, etc., with the sensor ideally located about half-way between window and corner, and floor and ceiling (Figure 2).

![Figure 1: Heat flux sensor](image-url)
Figure 2: Typical heat flux sensor and room temperature measurement locations

Stainless steel-sheathed thermistors, Campbell Scientific type 107, were used internally and externally to measure temperature [3]. Internal sensors were mounted in a simple shield to minimise the influence of solar radiation, heat sources, etc. (Figure 2). Each external temperature sensor was placed in a radiation shield mounted onto the exterior wall surface using a bracket (Figure 3).

Figure 3: Mounting of shielded external temperature sensor
Internal (Figure 2) and external surface temperatures were also measured using type-T thermocouples. Figure 3 shows the method of mounting external surface temperature sensors.

Figure 4: External surface temperature sensor

Sensors were logged at 5 second intervals and averaged over 10 minutes.

3 Data Analysis

Given that the monitoring conditions are non-steady state, it is considered necessary to monitor for about two weeks or, preferably longer, in order to collect sufficient data to estimate *in situ* U-values. For example, the U-value may be estimated by a simple averaging procedure as follows

\[
U_t = \frac{\sum_{i=1}^{\infty} Q_i}{\sum_{i=0}^{\infty} T_i - \sum_{i=0}^{\infty} T_e_i} \quad \text{W/m}^2\text{K} \quad \text{Eqn. 1}
\]

where \(U_t \) is the average U-value after \(t \) hours, \(Q_i, T_i \) and \(T_e \) are, respectively the heat flux, room temperature and external temperature collected at intervals of \(i \) hours. Figure 5 shows the effect of increasing the length of the monitoring period on the estimate of the U-value. A period of at least a week is required before the U-value estimate stabilises to within ±5% of the final value determined from about 27 days data. The drawback of the averaging method is that, for short monitoring periods at least, the thermal capacity of the wall is not taken into account.

An alternative to Equation 1 is to use the surface temperature difference across the wall (\(\Delta T_s \)) to determine its thermal resistance and add the standard internal and external surface resistances, respectively \(r_{\text{int}} = 0.13 \text{m}^2\text{K/W} \) and \(r_{\text{ext}} = 0.04 \text{m}^2\text{K/W} \), as follows.

\[
U_t = \frac{1}{\sum_{i=0}^{\infty} \Delta T_s_i} \quad \text{W/m}^2\text{K} \quad \text{Eqn. 2}
\]

\[
= \frac{1}{\sum_{i=0}^{\infty} Q_i + r_{\text{int}} + r_{\text{ext}}} \quad \text{W/m}^2\text{K}
\]
A small correction is applied for the thermal resistance of the heat flux sensor (<6.25×10³ m²K/W). The uncertainty of the U-values estimates is about ±10%.

4 The buildings

Figure 6: Victorian Villa, Cathcart, Glasgow

N-W facing bedroom
Blonde sandstone
Wall thickness: 600mm
External face: rubble
Internal face: lath and plaster
Figure 7: Crichton Campus, Dumfries

Early 20th Century
Six measurement locations
Locharbriggs sandstone
Wall thickness: 600mm
External face: Ashlar
Internal face: lath and plaster
Vented walls!

Lauriston Place, Edinburgh

19th Century tenement
Stone - Craigleith

Five measurement locations with various wall finishes and thicknesses. Additional test on basement floor

Figure 8: Lauriston Place
Front elevation (S), ground floor.

Wall thickness: 600mm
External face: Ashlar
Internal face: lath and plaster
Figure 9: Lauriston Place
Rear elevation (N), basement
Wall thickness: 600mm
External face: cement
Internal face: plasterboard

Castle Fraser
Kemnay Granite
Four measurement locations

Figure 10: Castle Fraser
Stables (N)
Wall thickness: ?
External face: rubble
Internal face: plasterboard

Figure 11: Castle Fraser
Stables/Turret (N)
Wall thickness: 350mm
External face: rubble
Internal face: hard
8

Figure 12: Castle Fraser
Gardeners’ Bothy (N)
Wall thickness: ?
External face: rubble
Internal face: lath and plaster

Figure 13: Castle Fraser
Apartments (E)
Wall thickness: 600mm
External face: harling
Internal face: lath and plaster

Figure 14: Weens Cottage, Borders
Red sandstone & brick
Four measurement locations
Wall thickness: 400mm
External face: rubble (x3) and cement (x1)
Internal face: hard plastered

5 Additional tests

Laboratory measurements on a Locharbriggs sandstone wall
In situ U-value measurements were made on a Locharbriggs sandstone wall constructed within an environmental chamber at Glasgow Caledonian University. The wall thickness is 550mm and has an Ashlar exterior and a rubble interior face (Figure 15). A heat flux sensor was mounted in the centre of the interior face.
Temperatures of 23°C on the warm side and 8°C on the cold side of the wall were maintained. The U-value was determined from 10 days data, which are sufficient under steady conditions.

Following the test on the solid wall, timber studs were fixed to the sides of the wall and a sheet of plasterboard added. The cavity formed was sealed off. A second heat flux sensor was mounted on the plasterboard. The U-value of the wall was re-measured with the plasterboard finish.

In situ measurements of basement floor at Lauriston Place, Edinburgh

In situ U-value measurements of the concrete floor in the unoccupied basement at Lauriston Place, Edinburgh were carried out before and after the introduction of a sample of a composite insulation material consisting of 21mm Spacetherm [4] backed with 9mm particleboard (Figure 16). The composite had been used to up-grade occupied basement flats at Lauriston Place as part of a Changeworks project [5]. During a previous refurbishment in the 1970’s, the basement flats had their original solid ground floors replaced with concrete laid on aggregate.

Prior to testing, a 100mm diameter core was cut from the floor, a thermocouple placed at the base of the hole thus formed, and the core replaced and sealed into the hole. The concrete core depth was approximately 150mm. The cement had been laid over a dpc covering aggregate.
Figure 16: Lauriston Place basement floor – testing of insulation on concrete floor

The U-value of the 150mm floor was measured before and after applying a sample of novel Spacetherm insulation.

6 Results and discussion

The wall descriptions and results are given in Table 1. The results are also summarised by internal wall finish (i.e. plastered on the hard, lath and plaster, plasterboard) in Figure 17 and masonry type in Figure 18. All wall finished with plasterboard have an air cavity behind the plasterboard.

Given the small sample size, the results indicate the following:

- For the walls plastered on the hard there is some correlation between wall thickness and U-value: generally the greater the wall thickness, the lower the U-value.

- The walls with lath and plasterboard finishes have lower U-values than those plastered on the hard.

- It is not possible to distinguish between the different masonry types. In the case of the Crichton Campus building (Locharbriggs sandstone), the six measurements show a greater range than those made in the other buildings with lath and plaster finishes. However, the ventilated walls in the Crichton Campus building have some influence on the U-value estimates, particularly on the top floor of the building.
Figure 18: Wall U-values by masonry type

Generally the in situ U-values are lower than expected from standard values of the thermal conductivity of “stone”. For example, the Scottish Buildings Standards gives a value of 2.3 W/mK for sandstone; which results in calculated U-values of 2.2 W/m²K for a 600mm sandstone wall plaster on the hard, and 1.5 W/m²K for a 600mm wall with plasterboard. However, the calculated values do not account for the effect of mortar, voids, etc. which are included in the in situ measurements.

The laboratory test results

The laboratory test results show reasonable agreement with the site measurements:
- Solid wall: 1.4 W/m²K
- Wall with plasterboard: 1.1 W/m²K

Lauriston Place, basement floor test results

Insulating the floor in the basement of Lauriston Place with 21mm Spacetherm/9mm particleboard composite resulted in a U-value of 0.6 W/m²K compared to 3.5 W/m²K for the concrete floor alone. These values agree well with calculated U-values, assuming the manufacturer’s thermal conductivity of 0.13 W/mK for Spacetherm.

7 Conclusions

The in situ U-values of twenty walls have been carried out covering part of the range of traditional Scottish masonry constructions and internal finishes.

Given the sample size it is not possible to differentiate between different masonry materials.

For walls plastered on the hard, increasing wall thickness improves the U-value.

Walls with lath and plasterboard finishes have lower U-values than those plastered on the hard. This demonstrates the insulating effect of an air cavity.
Further *in situ* measurement will be carried out during winter 2008/09, with the aims of extending the geographical range of masonry types within Scotland and also measuring the U-values of floors and roofs.

Thus far, indicative U-values for 600mm masonry walls are as follows:

- Wall plastered on the hard: 1.5 ±0.4 W/m²K
- Wall with lath and plaster: 1.0 ±0.3 W/m²K
- Wall with plasterboard: 0.9 ±0.1 W/m²K

8 References

<table>
<thead>
<tr>
<th>Location</th>
<th>Stone Type</th>
<th>Wall thickness</th>
<th>Outside Face</th>
<th>Inside Face</th>
<th>U-Value W/m²K</th>
<th>Monitoring Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victorian Villa, Glasgow</td>
<td>Blond Sandstone</td>
<td>600mm</td>
<td>Rubble</td>
<td>Lath</td>
<td>0.9</td>
<td>April-Dec 07</td>
</tr>
<tr>
<td>Crichton Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground floor South</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>1.0</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>Ground Floor North</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>1.4</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>First floor South</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>1.5</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>First floor North</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>1.0</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>Second floor South</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>0.6</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>Second floor North</td>
<td>Locharbriggs</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>0.8</td>
<td>Nov-Dec 07</td>
</tr>
<tr>
<td>Lauriston Place, Edinburgh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground floor front elevation</td>
<td>Craigleith</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Lath</td>
<td>1.4</td>
<td>Dec 07</td>
</tr>
<tr>
<td>Basement front wall</td>
<td>Craigleith</td>
<td>600mm</td>
<td>Ashlar</td>
<td>Hard</td>
<td>1.6</td>
<td>Dec 07</td>
</tr>
<tr>
<td>Basement rear wall</td>
<td>Craigleith</td>
<td>600mm</td>
<td>Cement</td>
<td>Plasterboard</td>
<td>1.0</td>
<td>Dec 07</td>
</tr>
<tr>
<td>No 28 Rear wall 1st floor</td>
<td>Craigleith</td>
<td>600mm</td>
<td>Rubble</td>
<td>Plasterboard</td>
<td>0.8</td>
<td>Jan 08</td>
</tr>
<tr>
<td>Front wall, below window</td>
<td>Craigleith</td>
<td>300mm</td>
<td>Ashlar</td>
<td>Hard</td>
<td>2.3</td>
<td>Jan 08</td>
</tr>
<tr>
<td>Castle Fraser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st floor bedroom</td>
<td>Kemnay Granite</td>
<td>600mm</td>
<td>Rubble</td>
<td>Lath</td>
<td>0.8</td>
<td>Mar 08</td>
</tr>
<tr>
<td>Ground floor turret</td>
<td>Kemnay Granite</td>
<td>350mm</td>
<td>Rubble</td>
<td>Hard</td>
<td>1.8</td>
<td>Mar 08</td>
</tr>
<tr>
<td>Ground floor stable office</td>
<td>Kemnay Granite</td>
<td>?</td>
<td>Rubble</td>
<td>Plasterboard</td>
<td>0.9</td>
<td>Mar 08</td>
</tr>
<tr>
<td>Gardener’s Bothy</td>
<td>Kemnay Granite</td>
<td>?</td>
<td>Rubble</td>
<td>Lath</td>
<td>0.8</td>
<td>Mar 08</td>
</tr>
<tr>
<td>Weens Cottage, Borders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground floor, East elevation</td>
<td>Red Sandstone</td>
<td>400mm</td>
<td>Rubble</td>
<td>Hard</td>
<td>1.2</td>
<td>Mar - Apr 08</td>
</tr>
<tr>
<td>North gable, ground floor</td>
<td>Red Sandstone</td>
<td>400mm</td>
<td>Rubble</td>
<td>Hard</td>
<td>1.1</td>
<td>Mar - Apr 08</td>
</tr>
<tr>
<td>West wall</td>
<td>Brick</td>
<td>400mm</td>
<td>Rubble</td>
<td>Hard</td>
<td>1.1</td>
<td>Mar - Apr 08</td>
</tr>
<tr>
<td>Bathroom wall, West elevation</td>
<td>Red Sandstone</td>
<td>400mm</td>
<td>Rubble</td>
<td>Hard</td>
<td>1.4</td>
<td>Mar - Apr 08</td>
</tr>
</tbody>
</table>