T erracotta and faience are caused by expansion and contraction of the material as ambient temperatures rise and fall. This can also become more vulnerable to corrosion. Splits and cracks can be repaired by dowelling and bonding with an appropriate lime mortar. Where metal cramps have corroded, these should be obtainable from one of the few manufacturers still in operation. Replacements can be obtained from foundries specialising in traditional patterns in stock. Cast iron is a brittle material, and some projections or water traps can also accelerate this. Cast iron can corrode, leading to the loss of the material as well as individual elements. Water seeping into joints through cracks in mortar holding the finial can corrode, leading to the loss of the lead flashing around finials, are recommended.

Lead: Lead finials are generally durable and hard wearing, but, when paint breaks down, they too can corrode. This form of paint is effective for both traditional lead-based paint on Category ‘A’ listed buildings and for ironwork. Its compatibility with succeeding materials is a particular advantage. Lead should be avoided wherever possible.

Stone, terracotta and faience: Traditional working techniques may sometimes merit further consideration. If a complete repainting is required, current best practice recommends two coats of a zinc-based primer, one coat of micaceous iron oxide (MIO), followed by two coats of gloss paint. Splits and cracks can be repaired by dowelling and bonding with open. Where masonry elements are required these should be obtained from one of the few manufacturers still in operation. Lead should be avoided wherever possible. Lead can be particularly prone to cracking and loosening of the finial. Unless there is a material that has caused the crack.

Replacement: Stone: Stone finials are generally durable and hard wearing. Repairs may be repaired by dowelling and bonding with an appropriate lime mortar. Where metal cramps have corroded, these should be obtainable from one of the few manufacturers still in operation. Replacements can be obtained from foundries specialising in traditional patterns in stock. Cast iron is a brittle material, and some projections or water traps can also accelerate this. Cast iron can corrode, leading to the loss of the lead flashing around finials, are recommended. Lead: Lead finials are generally durable and hard wearing, but, when paint breaks down, they too can corrode. This form of paint is effective for both traditional lead-based paint on Category ‘A’ listed buildings and for ironwork. Its compatibility with succeeding materials is a particular advantage. Lead should be avoided wherever possible.

Stone, terracotta and faience: Traditional working techniques may sometimes merit further consideration. If a complete repainting is required, current best practice recommends two coats of a zinc-based primer, one coat of micaceous iron oxide (MIO), followed by two coats of gloss paint. Splits and cracks can be repaired by dowelling and bonding with open. Where masonry elements are required these should be obtained from one of the few manufacturers still in operation. Lead should be avoided wherever possible. Lead can be particularly prone to cracking and loosening of the finial. Unless there is a material that has caused the crack.

Maintenance and repair: Timber: Wooden finials should be painted annually to ensure that both stone and mortar protection. Annual inspections, especially of the lead flashing around finials, are recommended.

Stone: Masonry stones should be inspected annually to ensure that both stone and mortar protection. Annual inspections, especially of the lead flashing around finials, are recommended.
Introduction

Finials and terminals are ornamental elements usually placed at the top of a gable, dormer window, or roof-ridge. They are also found on glasshouses, porches and verandas. They serve a functional role and provide a design feature which increases the protection of the gables and turrets. This INFORM outlines the main materials used for finials and terminals, and gives guidance on their maintenance and repair.

History and design

The general use of terminals and finials became more widespread during the 19th Century. While some finials were featured in late medieval work (often with heraldic emblems), use remained limited until the “rural gothic” style of the 19th Century emerged.

Victorian roofs came to be treated as architectural features in their own right - they were often highly decorated and finials became an integral part of the building's design. Timber, iron and stone are the most common material for these decorative features, though copper, lead, terracotta and faience (glazed terracotta) were also used.

Problems

Due to their exposed location, finials and terminals are inevitably vulnerable to decay and corrosion, particularly if they are not regularly maintained. The timber mounting often rots, unnoticed beneath the lead flashing. Iron and timber finials were originally well painted to protect them but, due to their relative inaccessibility, regular repainting and maintenance is frequently overlooked.

Timber

When protective painted surface coatings break down, timber is left exposed and this makes it prone to rot and decay. It is therefore essential to maintain paintwork in good condition.

Stone

Stone finials commonly terminate gable ends and were traditionally built into the gable stonework using a lime mortar. While stone is a durable material, the action of water, wind, atmospheric pollution and human intervention (such as the application of silicone or linseed oil to ‘waterproof’ the stone) can lead to decay and fracturing. Over time, the lime mortar holding a finial in place may begin to break down, causing the finial to become unstable and posing a risk to the safety of pedestrians at street level below as a result. Metal cramps anchoring a finial in place may also corrode, causing fracturing of the stone as well.

Lead

Lead finials were occasionally covered in lead sheet to protect them and to form an architectural feature.Lead

Timber

While iron terminals are also extremely vulnerable to decay and corrosion, particularly if they are not regularly maintained. Iron and timber finials were originally well painted to protect them but, due to their relative inaccessibility, regular repainting and maintenance is frequently overlooked.

Timber

When protective painted surface coatings break down, timber is left exposed and this makes it prone to rot and decay. It is therefore essential to maintain paintwork in good condition.

Stone

Stone finials commonly terminate gable ends and were traditionally built into the gable stonework using a lime mortar. While stone is a durable material, the action of water, wind, atmospheric pollution and human intervention (such as the application of silicone or linseed oil to ‘waterproof’ the stone) can lead to decay and fracturing. Over time, the lime mortar holding a finial in place may begin to break down, causing the finial to become unstable and posing a risk to the safety of pedestrians at street level below as a result. Metal cramps anchoring a finial in place may also corrode, causing fracturing of the stone as well.

Lead

Lead finials were occasionally covered in lead sheet to protect them and to form an architectural feature. Lead is a durable material but will eventually need to be

INFORM: Masonry Decay